ГлавнаяКомплексное Землепользование Воскресенье, 24.11.2024, 02:32 RSS
Разделы Сайта

Категории сайта
ШКОЛА Воинствующего Крестьянина [13]
Животные (ферма) [11]
Теплицы [1]
Спирулина, как источник протеинов.
Сад, Поле, Огород [8]
Биогаз [12]

Статистика

Яндекс.Метрика

Главная » Статьи » Школа Комплексного Землепользования » ШКОЛА Воинствующего Крестьянина

Углекислый газ и карбонатная система воды - Часть 1

Мне очень часто задают вопросы и вопросы очень важные:

"Какие параметры необходимо соблюсти в первую очередь, а какие во-вторую?"

Этот вопрос повторяется, в различных интерпритациях, не зависимо от того, какой из отраслей наиболее интересует человека. Будь то получение биогаза или культивирование синезеленых водорослей, кормление птицы или животных, выращивание овощей в открытом грунте или в теплице.

  

Всегда,  везде, повсюду мы сталкиваемся с водой. Вода самый распространенный и универсальный растворитель, без воды немыслима жизнь на земле. А много ли мы знаем о воде? Казалось бы много, но...

  

Если Вы ставите своей целью извлечь максимум выгоды из своей деятельности с минимальными затратами, вам не обойтись без знаний, во многих областях.

  

Те кто считают, что им достаточно научиться" управлять", а конкретными и специальными знаниями должны владеть специалисты в отдельной области, правы, но от части. Какова эта "часть" правоты? Покажет время, и не столь далекое.

  

А мы пока вооружимся знаниями которые помогут ориентироваться в вопросах о роли воды в получении прибыли. Как не смешно это выглядет.

  

Многим известны рекомендации по использованию воды, более мягкой и кислой, по сравнению с фильтратом, полученого из шлама после ферментации биосубстракта в биореакторе. Удобно пользоваться для этой цели дистиллированной водой, мягкой и слабокислой, смешивая ее с водой из сборника - накопителя. Но оказывается, что при этом жесткость исходной воды уменьшается пропорционально разведению, а рН практически не изменяется. Свойство сохранять значение показателя рН независимо от степени разведения, называется буферностью. В этой статье мы познакомимся с основными компонентами буферных систем воды: кислотностью воды - рН, содержанием углекислого газа - СО2, карбонатной «жесткостью» - dКН (эта величина показывает содержание в воде гидрокарбонат-ионов НСО3-; этот параметр называют щелочностью), общую жесткость – dGН (для упрощения принимается, что ее составляют только ионы кальция – Са++). Обсудим их влияние на химический состав природной воды и фильтрата, собственно буферные свойства, а также механизм воздействия рассматриваемых параметров на живые организмы. Большинство химических реакций, рассматриваемых ниже, являются обратимыми, поэтому вначале важно познакомиться с химическими свойствами обратимых реакций; это удобно сделать на примере воды и показателя рН.

ОГЛАВЛЕНИЕ

  1. О химических равновесиях, единицах измерения и рН
  2. СО2 со товарищи, рН и снова единицы измерения
  3. Природная вода и углекислотное равновесие
  4. О воде - шламовом фильтрате и произведении растворимости
  5. Карбонатная буферная система
  6. СО2 и физиология дыхания.
  7. Мини-практикум
  8. Использованная литература

1. О ХИМИЧЕСКИХ РАВНОВЕСИЯХ, ЕДИНИЦАХ ИЗМЕРЕНИЯ И pН

Вода является хотя и слабым, но все же электролитом, т. е. способна к диссоциации, описываемой уравнением

Н2О→Н+ +ОН-

Этот процесс обратим, т.е.

Н++ОН-→Н2О

C химической точки зрения ион водорода Н+ всегда является кислотой. Ионы, способные связывать, нейтрализовывать кислоту (Н+), являются основаниями. В нашем примере это – гидроксил-ионы (ОН-), но в аквариумной практике, как будет показано ниже, доминирующим основанием является гидрокрабонат-ион НСО3-, ион карбонатной «жесткости». Обе реакции протекают с вполне измеримыми скоростями, определяемыми концентрацией: скорости химических реакций пропорциональны произведению концентраций реагирующих веществ. Так для обратной реакции диссоциации воды Н++ОН-→Н2О ее скорость выразится следующим образом:

Vобр = Кобр+][OH-]

К – коэффициент пропорциональности, называемый константой скорости реакции.
[ ]-квадратные скобки обозначают молярную концентрацию вещества, т.е. количество молей вещества в 1 литре раствора. Моль можно определить как вес в граммах (или объем в литрах - для газов) 6∙1023 частиц (молекул, ионов) вещества - число Авогадро. Число, показывающее вес 6∙1023 частиц в граммах равно числу, показывающему вес одной молекулы в дальтонах.

Так, например, выражение [H2O] обозначает молярную концентрацию водного раствора … воды. Молекулярный вес воды составляет 18 дальтон (два атома водорода по 1д, плюс атом кислорода 16д), соответственно 1 моль (1М) Н2О – 18 грамм. Тогда 1 литр (1000 грамм) воды содержит 1000:18=55,56 молей воды, т.е. [H2O]=55,56М=const.

Поскольку диссоциация – процесс обратимый (Н2О↔Н++ОН-), то при условии равенства скоростей прямой и обратной реакции (Vпр=Vобр), наступает состояние химического равновесия, при котором продукты реакции и реагирующие вещества находятся в постоянных и определенных соотношениях: Кпр[H2O] = Kобр[H+][OН-]. Если константы объединить в одной части уравнения, а реагенты в другой, то получим

Кпробр = [H+][OH-]/[H2O] = К

где К также является постоянной величиной и называется константой равновесия.

Последнее уравнение является математическим выражением т.н. закона действия масс: в состоянии химического равновесия отношение произведений равновесных концентраций реагентов является постоянной величиной. Константа равновесия показывает, при каких пропорциях реагентов наступает химическое равновесие. Зная значение К, можно предсказать направление и глубину протекания химической реакции. Если К>1, реакция протекает в прямом направлении, если К<1 – в обратном. Используя константу равновесия, с химическими уравнениями можно обращаться как с алгебраическими и производить соответствующие вычисления. Точность их не очень высока, но они относительно просты и наглядны, что позволяет глубже понять смысл рассматриваемых процессов. Численное значение константы равновесия индивидуально и постоянно для каждой обратимой химической реакции. Оно определяется экспериментально, и эти значения приводятся в химических справочниках.

В нашем примере К = [H+][OН-]/[H2O] = 1,8∙10-16. Поскольку [H2O] =55,56 =const, то ее можно объединить с К в левой части уравнения. Тогда:

К[H2O]=[H+][OH-]=(1,8∙10-16)∙(55,56)=1∙10-14= const. = Кw

Преобразованное в такую форму уравнение диссоциации воды называется ионным произведением воды и обозначается Кw. Значение Кw остается постоянным при любых значениях концентраций Н+ и ОН-, т.е. с увеличением концентрации ионов водорода Н+, уменьшается концентрация ионов гидроксила – ОH- и наоборот. Так, например, если [H+] = 10-6, то [OH-] = Kw/[H+] = (10-14)/(10-6)=10-8. Но Кw = (10-6).(10-8) =10-14 = const. Из ионного произведения воды следует, что в состоянии равновесия [H+] = [OH-] = √Кw = √1∙10-14 = 10-7М.

Однозначность связи между концентрацией ионов водорода и гидроксила в водном растворе позволяет для характеристики кислотности или щелoчности среды пользоваться одной из этих величин. Принято пользоваться величинoй концентрации ионов водорода Н+. Поскольку величинами порядка 10-7 оперировавть неудобно, в 1909 году шведский химик К.Серензен предложил использовать для этой цели отрицательный логарифм концентрации водородных ионов Н+ и обозначил его рН, от лат. potentia hydrogeni – сила водорода: рН = -lg[H+]. Тогда выражение [H+]=10-7 можно записать коротко как pH=7. Т.к. предложенный параметр не имеет единиц измерения, он называется показателем (рН). Удобство предложения Серензона вроде бы очевидно, но он подвергался критике современников за непривычную обратную зависимость между концентрацией ионов водорода Н+ и значением показателя рН: с увеличением концентрации Н+, т.е. с увеличением кислотности раствора, значение показателя рН уменьшается. Из ионного произведения воды следует, что показатель рН может принимать значения от 0 до 14 с точкой нейтральности рН=7. Органы вкуса человека начинают различать кислый вкус со значения показателя рН=3,5 и ниже.

Для нас, актуален диапазон рН 4,5-9,5 (ниже будет рассматриваться только он) и традиционно принята следующая шкала с непостоянной ценой деления:

  • рН<6-кислая
  • рН 6,0-6,5 – слабокислая
  • рН 6,5-6,8 – очень слабокислая
  • рН 6,8-7,2 –нейтральная
  • рН 7,2-7,5 – очень слабощелочная
  • рН 7,5-8,0 - слабощелочная
  • рН>8 – щелочная

На практике в большинстве случаев гораздо информативнее оказывается более грубая шкала с постоянной ценой деления:

  • рН=5±0,5 – кислая
  • рН=6±0,5 – слабокислая
  • рН=7±0,5 – нейтральная
  • рН=8±0,5 – слабощелочная
  • рН>8,5 – щелочная

Среды с рН<7,5 и рН>9,5 являются биологически агрессивными, и их следует считать непригодными для метаболизма метанообразующих. Поскольку показатель рН является логарифмической величиной, то изменение рН на 1 единицу означает изменение концентрации ионов водорода в 10 раз, на 2 – в 100 раз и т.д.. Изменение концентрации Н+ вдвое приводит к изменению значения показателя рН лишь на 0,3 единицы.

Многие рыбы, растения, животные и человек, без особого вреда для здоровья переносят и 100-кратные (т.е. на 2 единицы рН) изменения кислотности воды. Однако это не относится к метанообразующим бактериям. Практика  показывает, что метанообразующие бактерии имеют максимальные показатели метаболизма в среде с рН 7,0-8,0. С. Спотт считает рН 7,1-7,8 оптимальным показателем.

Дистиллированная вода имеет рН 5,5–6,0, а не ожидаемое рН=7. Чтобы разобраться с этим парадоксом, необходимо познакомиться с «благородным семейством»: СО2 и его производными.

2. СО2 СО ТОВАРИЩИ, pН, И СНОВА ЕДИНИЦЫ ИЗМЕРЕНИЯ

Согласно закону Генри содержание газа воздушной смеси в воде пропорционально его доле в воздухе (парциальному давлению) и коэффициенту абсорбции. Воздух содержит до 0,04% СО2, что соответствует его концентрации до 0,4 мл/л. Коэффициент абсорбции СО2 водой=12,7. Тогда 1 литр воды может растворить 0,6 – 0,7 мл СО2 (мл, а не мг!). Для сравнения, его биологический антипод – кислород, при 20%-ном содержании в атмосфере и коэффициенте абсорбции 0,05 обладает растворимостью 7 мл/л. Сравнение коэффициентов абсорбции показывает, что при прочих равных растворимость СО2 значительно превышает растворимость кислорода. Попробуем разобраться, за что же такая несправедливость.

В отличие от кислорода и азота, углекислый газ - СО2, является не простым веществом, а химическим соединением – оксидом. Как и другие оксиды, он взаимодействует с водой с образованием гидратов оксидов и, как и у других неметаллов, его гидроксидом является кислота (угольная):

СО22О = Н2СО3.

В итоге большей относительной растворимостью углекислый газ обязан химическому связыванию его водой, чего не происходит ни с кислородом, ни с азотом. Рассмотрим внимательнее кислотные свойства угольной кислоты, применив закон действия масс и приняв во внимание, что [H2O] = const:

СО22О↔Н++НСО3-;  К1 = [Н+][HCO3-]/[CO2] = 4∙10-7
НСО3-↔Н++СО3--
К2 = [H+][CO3--]/[HCO3-] = 5,6∙10-11

здесь К1 и К2 – константы диссоциации угольной кислоты по 1 и 2-ой ступени.

Ионы НСО3- называются гидрокарбонатами (в старой литературе бикарбонатами), а ионы СО3-- - карбонатами. Порядок величин К1 и К2 говорит о том, что угольная кислота является весьма слабой кислотой (К1<1 и К2 <1), а сравнение величин К1 и К2 – о том, что в ее растворе доминируют гидрокарбонат-ионы (К12).

Из уравнения К1 можно рассчитать концентрацию ионов водорода Н+:

[H+] = K1[CO2]/[HCO3-]

Если выразить концентрацию Н+ через рН, как это в свое время сделали Хендерсон и Хассельбальх для теории буферных растворов, то получим:

рН = рК1 – lg[CO2]/[HCO3-]
или удобнее
рН = рК1 + lg[HCO3-]/[CO2]

где, по аналогии с рН, рК1 = -lgК1 =-lg4∙10-7 ≈ 6,4 = const. Тогда pH=6,4 + lg[HCO3-]/[CO2]. Последнее уравнение известно как уравнение Хендерсона – Хассельбальха. Из уравнения Хендерсона – Хассельбальха следуют по крайней мере два важных вывода. Во-первых, для анализа величины показателя рН необходимо и достаточно знания концентраций компонентов только СО2-системы. Во-вторых, значение показателя рН определяется отношением концентраций [HCO3-]/[CO2], а не наоборот.

Поскольку содержание [HCO3-] неизвестно, для вычисления концентрации Н+ в дистиллированной воде можно воспользоваться принятой в аналитической химии формулой [H+] = √K1[CO2]. Тогда рН = -lg√K1[CO2]. Чтобы оценить интересующую нас величину показателя рН, вернемся к единицам измерения. Из закона Генри известно, что концентрация СО2 в дистиллированной воде составляет 0,6мл/л. Выражение [CO2] означает молярную концентрацию (см. выше) углекислого газа. 1М СО2 весит 44 грамма, и принормальных условиях занимает объем 22,4 литра. Тогда для решения задачи необходимо определить, какую долю от 1М, т.е. от 22,4 литров, составляют 0,6 мл. Если концентрация СО2 выражена не в объемных, а в весовых единицах, т.е. в мг/л, то искомую долю необходимо считать от молярного веса СО2 – от 44 грамм. Тогда искомая величина составит:

[CO2] = x∙10-3/22,4 = y∙10-3/44

где х – объемная (мл/л), у – весовая (мг/л) концентрация СО2. Простейшие вычисления дают приблизительную величину 3∙10-5М СО2, или 0,03mM. Тогда

рН = -lg√K1[CO2] = -lg√(4∙10-7)(3∙10-5) = -lg√12∙10-12 = -lg(3,5∙10-6)≈ 5,5

что вполне согласуется с измеряемыми значениями.

Из уравнения Хендерсона-Хассельбальха видно, как величина показателя рН зависит от отношения [НСO3-]/[СО2]. Приблизительно можно считать, что если концентрация одного компонента превышает концентрацию другого в 100 раз, то последней можно пренебречь. Тогда при [НСО3-]/[СО2] = 1/100   рН = 4,5, что можно считать нижним пределом для СО2-системы. Меньшие значения показателя рН обусловлены присутствием не угольной, а других минеральных кислот, например серной, соляной. При [НСО3-]/[СО2] = 1/10, рН ≈ 5,5. При [НСО3-]/[СО2] = 1, или [НСО3-] = [СО2], рН ≈ 6,5. При [НСО3-]/[СО2] = 10, рН ≈ 7,5. При [НСО3-]/[СО2] =100, рН ≈ 8,5. Считается, что при рН>8,3 (точка эквивалентности фенолфталеина) свободная углекислота в воде практически отсутствует.

3. ПРИРОДНАЯ ВОДА И УГЛЕКИСЛОТНОЕ РАВНОВЕСИЕ

В природе атмосферная влага, насыщаясь СО2 воздуха и выпадая с осадками, фильтруется через геологическую кору выветривания. Принято считать, что там она, взаимодействуя с минеральной частью коры выветривания, обогащается т.н. типоморфными ионами: Ca++, Mg++, Na+, SO4--, Сl- и формирует свой химический состав.

Однако работами В.И. Вернадского и Б.Б. Полынова показано, что химический состав поверхностных и грунтовых вод регионов с влажным и умеренно влажным климатом формирует в первую очередь почва. Влияние же коры выветривания связано с ее геологическим возрастом, т.е. со степенью выщелоченности. Разлагающиеся растительные остатки поставляют в воду СО2, НСО3- и зольные элементы в пропорции, соответствующей их содержанию в живом растительном веществе: Cа>Na>Mg. Любопытно, что практически во всем мире питьевая вода, используемая и в метановых реакторах, в качестве доминирующего аниона содержит гидрокарбонат-ион НСО3-, а из катионов – Ca++, Na+, Mg++, нередко с некоторой долей Fe. А поверхностные воды влажных тропиков вообще удивительно однообразны по химическому составу, отличаясь лишь степенью разведения. Жесткость таких вод крайне редко достигает средних значений (8ºdGH), удерживаясь обычно на уровне до 4ºdGН. Ввиду того, что в таких водах [CO2]≈[HCO3-], они имеют слабокислую реакцию и значение показателя рН 6,0-6,5. Обилие листового опада и активно идущее его разрушение при большом количестве осадков могут приводить к весьма высокому содержанию в таких водах СО2 и гумусовых веществ (фульвокислот) при почти полном отсутствии зольных элементов. Таковы т.н. «черные воды» Амазонии, в которых значение показателя рН может опускаться до 4,5 и дополнительно удерживаться т.н. гуматным буфером.

На содержание СО2 в природных водах оказывает влияние и их подвижность. Так в проточных водах СО2 содержится в концентрации 2 – 5 мг/л (до 10), тогда как в стоячих водах болот и прудов эти величины достигают значения 15 – 30 мг/л .

В засушливых и бедных растительностью регионах на формирование ионного состава поверхностных вод заметное влияние оказывает геологический возраст горных пород, слагающих кору выветривания и их химический состав. В них рН и пропорции типоморфных ионов будут отличаться от приведенных выше. В результате формируются воды с заметным содержанием 4 и Сl-, а из катионов могут преобладать + с заметной долей Mg++. Возрастает и общее содержание солей – минерализация. В зависимости от содержания гидрокарбонатов, значение показателя рН таких вод колеблется в среднем от рН 7±0,5 до рН 8±0,5, а жесткость всегда выше 10ºdGH. В стабильно щелочных водах, при рН>9, основными катионами всегда будут Mg++ и Na+ с заметным содержанием калия, поскольку Са++ осаждается в форме известняка. В этом плане особенно интересны воды Великой Африканской рифтовой долины, которая характеризуется т.н. содовым засолением. При этом даже воды таких гигантов, как озера Виктория, Малави и Танганьика отличаются повышенной минерализацией и таким высоким содержанием гидрокарбонатов, что карбонатная «жесткость» в их водах превышает жесткость общую: dKH>dGH.

Содержащиеся в воде СО2 и его производные – гидрокарбонаты и карбонаты, связаны между собой т.н. углекислотным равновесием:

СО2 + Н2О↔Н++НСО3-↔2Н+ + СО3--

 В тех регионах, где кора выветривания молодая и содержит известняк (СаСО3), углекислотное равновесие выражается уравнением

СаСО3 + СО2 + Н2О ↔ Cа++ + 2НСО3-

Применив к этому уравнению закон действия масс (см. выше) и приняв во внимание, что [H2O]=const и [CaCO3]=const (твердая фаза), получаем:

[Ca++][HCO3-]2/[CO2] = КСО2

где КСО2 – константа углекислотного равновесия.

Если концентрации действующих веществ выражены в миллимолях (mM,10-3М), то КСО2 = 34,3. Из уравнения КСО2 видна неустойчивость гидрокарбонатов: в отсутствие СО2, т.е. при [CO2]=0, уравнение не имеет смысла. При отсутствии углекислого газа гидрокарбонаты разлагаются до СО2 и подщелачивают воду: НСО3-→ОН-+СО2. Содержание свободной СО2 (для «неживой» воды весьма незначительное), которое обеспечивает устойчивость данной концентрации гидрокарбонатов при неизменном рН, называется равновесной углекислотой - [CO2]р. Она связана как с содержанием углекислого газа в воздухе так и с dКН воды: с ростом dКН увеличивается и количество [СО2]р. Содержание СО2 в природных водах как правило близко к равновесной и именно эта их особенность, а не значения dKH, dGН и рН чаще всего отличает состояние природных вод от аквариумной воды. Решив уравнение КСО2 относительно СО2, можно определить концентрацию равновесной углекислоты:

[CO2]р = [Ca++][HCO3-]2/КСО2

Поскольку понятия общей жесткости, карбонатной «жесткости» и кислотности являются культовыми, то интересно, что уравнения:

К1 = [H+][HCO3-]/[CO2]
и
КСО2 = [Ca++][HCO3-]2/[CO2]

объединяют их в одну систему. Разделив КСО2 на К1, получим обобщенное уравнение:

КСО21=[Ca++][HCO3-]/[H+]

Напомним, что [H+] и рН объединяет обратнопропорциональная зависимость. Тогда последнее уравнение показывает, что параметры: dGH, dKH и рН связаны прямопропорционально. Это значит, что в состоянии, близком к газовому равновесию, увеличение концентрации одного компонента приведет к увеличению концентрации остальных. Данное свойство хорошо заметно при сравнении химического состава природных вод разных регионов: более жесткие воды отличаются более высокими значениями рН и dКН.

Для рыб оптимальное содержание СО2 составляет 1–5мг/л. Концентрации более 15мг/л опасны для здоровья многих видов рыб (см. ниже). Однако для метаболизма синезеленых водорослей концентрация 20-36мг/л является наиболее благоприятной.

Таким образом, с точки зрения углекислотного равновесия, содержание СО2 в природных водах всегда близко к [CO2.
Категория: ШКОЛА Воинствующего Крестьянина | Добавил: coba (01.03.2009)
Просмотров: 2160 | Рейтинг: 5.0/2
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Поиск по сайту


Copyright хутор СОВА (с) 2024