ГлавнаяКомплексное Землепользование Воскресенье, 24.11.2024, 01:02 RSS
Разделы Сайта

Категории сайта
ШКОЛА Воинствующего Крестьянина [13]
Животные (ферма) [11]
Теплицы [1]
Спирулина, как источник протеинов.
Сад, Поле, Огород [8]
Биогаз [12]

Статистика

Яндекс.Метрика

Главная » Статьи » Школа Комплексного Землепользования » ШКОЛА Воинствующего Крестьянина

Новое виденье «прогрессивного развития» ч.1.
Новое виденье «прогрессивного развития»

Докладчик: ЧК НАН Украины В.Сова
Международный симпозиум
«Новые вызовы академической науке в контексте проблем современного кризиса: мировой и национальный аспекты»
г. Алушта, АР Крым, Украина,
14-18 сентября 2009 г.

О развитии ЖИЗНИ
 
публикуется в сокращении
 
Мы, разумные существа, не должны забывать, что наша цивилизация — лишь одно из замечательных явлений природы, зависящих от постоянного притока концентрированной энергии солнечного излучения.
Ю. Одум

ч.1. Прогрессивное развитие

Мы, разумные существа, не должны забывать, что наша цивилизация — лишь одно из замечательных явлений природы, зависящих от постоянного притока концентрированной энергии солнечного излучения.
Ю. Одум

Вопрос о движущих силах развития жизни, о направлении эволюции, ее прогрессе, по образному выражению Н. В. Тимофеева-Ресовского, «это самое больное место всех биологов». В одной из последних работ Николай Владимирович писал, что не существует мало-мальски приемлемого, логичного понятия прогрессивной эволюции и что «сегодня никто не может дать серьезный ответ на вопрос, ведет ли отбор автоматически к прогрессивной эволюции» [Тимофеев-Ресовский, 1980. с. 63].

Проиллюстрируем неоднозначность и неопределенность трактовки прогрессивного развития жизни на нескольких примерах. Известные теоретики П. Эрлих и Р. Холм в книге «Процесс эволюции» [М., 1976] отмечают, что основной вопрос остается без ответа: почему в ходе эволюции ДНК создала для своего собственного воспроизведения трубкозубов и людей, тогда как бактерии и другие простые организмы, казалось бы, могут не хуже служить для этой цели? Наиболее образно высказался современный биолог-эволюционист Р. Левонтин [1978]. Он сравнил существующую теорию эволюции с машиной, активно перерабатывающей огромное количество сырья (особенно с помощью новых методов молекулярной биологии и генетики), которое, к сожалению, почему-то не превращается в готовый продукт.

Можно привести еще много таких высказываний. Их основу составляет неудовлетворенность современным состоянием эволюционной теории, особенно при объяснении прогрессивного развития. Вопрос действительно «больной», и однозначного мнения нет. Некоторые представители ортодоксальной точки зрения, полагая. что здание эволюционной теории полностью построено, склонны аттестовать любые виды критики как рецидив ламаркизма, другие соглашаются, что есть недоработки, поскольку в последние годы число попыток модифицировать представления о развитии жизни заметно возросло.
 
В целом эволюционная теория с успехом выполняет пока только функцию объяснения существующего и «практически неспособна выполнять задачи предсказания» [Борзенков, 1982, с. 16]. Описательность биологии бросается в глаза; однако умение теории отвечать на вопрос «как?», не затрагивая ответа на вопрос «почему?», уменьшает ее шансы называться теорией.

С исторической точки зрения понятно, почему представления о прогрессивной эволюции не были необходимым звеном развития дарвинизма на начальных этапах. Сам Ч. Дарвин, разрабатывая учение о происхождении видов путем естественного отбора, одним из главных достижений считал изгнание телеологии из теории об эволюционном развитии жизни. В то время это было действительно важно для материалистического понимания и объяснения эволюции, И поэтому Ч. Дарвин, всегда корректно и внимательно относившийся к взглядам оппонентов, резко выступал против укоренившихся натурфилософских представлений о внутреннем стремлении живых организмов к усложнению организации, к совершенству (по его словам, «этого дурацкого ламарковского стремления к совершенству»). Отсюда и появляется избыточное акцентирование внимания на стохастичности в противовес стремлению к предначертанным идеальным формам структуры или движения, представления о которых развивал великий Аристотель.

По Ч. Дарвину, процесс приспособления способен случайно приводить к изменениям, которые можно рассматривать как прогресс, но нет внутреннего механизма, обеспечивающего неуклонное совершенство. Сам Ч. Дарвин в своих письмах напоминал; «Никогда не применяйте слова „выше” или „ниже” (цит. по. [Майр, 1981, с. 20]).

Однако, оценивая факты, иллюстрирующие «уравновешение и экономию роста», Ч. Дарвин [1912, с. 117] отмечал, что они «могут быть подведены под общин принцип, а именно, что естественный отбор непрерывно пытается экономизировать всякую часть организации...».

Таким образом, начиная с основателя, дарвинизм не дает определения прогресса, особенно на уровне организма, но он дает в руки эволюциониста ясное понимание того, что существует очень сильное оружие, действующее на популяционном уровне,— естественный отбор (как отмечает Э. Майр, именно популяционное мышление было наиболее революционной идеей теории Ч. Дарвина).

Крупнейший синтез биологии XX в., исторически трудно складывавшийся — синтез дарвинизма и генетики — современная синтетическая теория эволюции (в основном микроэволюции), также не дает строгого определения «прогресса» в направлении эволюции. «Современная наука пока не в состоянии дать общего определения понятию «прогресс» в биологии. Возможно, такого рода определение не будет найдено и в будущем...» [Яблоков, Юсуфов, 1976, с. 268]. Однако, отмечая «постоянно растущую в процессе эволюции сложность биосферы, связанное с ней усиление давления жизни и разнообразие групп организмов», авторы цитированного учебника говорят о неизбежности «не только появления все более сложных существ и органов, но и их энергетического совершенствования» [Там же, с. 266].

Естествознание XIX в. по праву гордилось двумя крупнейшими достижениями: разработкой материалистической концепции эволюции в науках о живой природе и разработкой концепции энергии в развитии физики. Несомненно, что поиск внутренней связи между этими концепциями был предметом многих исследований.
Так, К. А. Тимирязев еще в 1912 г. подчеркивал, что вопрос о космической роли растений является какой-то пограничной областью между двумя великими обобщениями прошлого века, между учением о рассеянии энергии и учением о борьбе за существование. Однако попытки найти простые формальные связи и вывести на их основе энергетические принципы развития жизни оказались практически безрезультатными. Более того, непосредственное приложение термодинамических законов к анализу явлений жизни привело к прямому противоречию: эволюция (развитие) живых систем происходит в направлении, противоположном указываемому вторым началом термодинамики (вместо деградации системы и роста энергии — повышение организации системы).
 
Следовательно, согласно представлениям классической термодинамики, жизни как устойчивого явления не должно существовать. Сам факт наличия и развития жизни убедительно демонстрирует некорректность выводов подобного рода. «Жизнь не укладывается и посылки, в которых энтропия установлена», — отмечал В. И. Вернадский [l960, с. 85].

Потребовалось развить новую область, термодинамики — неравновесную термодинамику, на основе которой оказалось возможным ввести термодинамические критерии эволюции открытых систем. В применении к живым системам, открытость которых является одним из важнейших свойств, эти критерии определяют устойчивость стационарного состояния (а не равновесия — аналога смерти!), в котором скорость производства энтропии и, следовательно, рассеяния энергии минимальна.
 
И опять физический критерий эволюции не соответствует развитию реальных живых систем, которые в эволюции явно увеличили и рассеяние, и использование потоков энергии, пропускаемых через себя.
 
Физики и механики назвали энергию «царицей мира», а энтропию — ее «тенью». Понятие энтропии имеет двойственную природу. (Третью сторону — информационную — мы пока не затрагиваем.) С одной стороны, энтропия характеризует рассеиваемое системой «бесполезное» тепло, а с другой— является мерой упорядоченности (с ростом энтропии увеличивается беспорядок — в этом проявляется «теневой» смысл энтропии). Так вот в биологии, где упорядоченность структур почему-то возрастает, больше внимания уделялось энтропии, чем энергии. «Царица мира»— энергия оказалась в тени своей собственной «тени» — энтропии. Много говорилось об отрицательной упорядочивающей энтропии, присущей живым организмам.
 
Даже солнечный свет предпочитали рассматривать как «мощный источник отрицательной энтропии», а не как поток энергии [Шредингер. 1972, с. 70]. А между тем для существования любого стационарного состояния открытой системы необходим поток свободной энергии извне, а не поток отрицательной энтропии в систему, или негэнтропии, как это следовало из вывода Э.Шредингера, наиболее часто упоминаемого в литературе. Самым простым подтверждением этому является возможность гетеротрофного роста клеток (т. е. синтеза сложных биополимеров и структур) на простых неорганических солях и углеводах (и даже углеводородах).
 
Еще более убедителен хемо- и фотоавтотрофный рост, где используются лишь простые неорганические соединения и поэтому о питании отрицательной энтропией (или на языке термодинамики — высокоупорядоченными структурами) не может быть и речи. Однако абсолютно необходимым условием развития во всех упомянутых случаях является поток свободной энергии в различных формах (при окислении органических соединении; выделяемой в экзергонических реакциях окисления неорганических веществ типа реакции образования «гремучего газа»; энергии квантов света).

В целом термодинамический анализ возможности устойчивого существования стационарных состоянии диссипативных структур (т. е. обладающих определенным уровнем организации), согласно И. Пригожину, не указывает пути эволюции этих состояний.
 
Итак, и к настоящему моменту физика и биология не дают единой картины развития, перехода от сложных физических к простым (но еще более сложным на самом деле) биологическим структурам. Ситуация настолько драматична, что вместо ожидаемого синтеза имеет место прямое размежевание. Физики в данном случае «отгородились» принципом дополнительности, который ввел знаменитый Н. Бор. Согласно этому принципу, некоторые понятия несовместимы и должны восприниматься как дополняющие друг друга. «Идея дополнительности,— пишет известный физик-теоретик А. Б. Мигдал [1983, с. 39],— позволяет понять и примирить такие противоположности, как физическая закономерность и целенаправленное развитие живых объектов». Дополнительность, а с нею и несводимость физико-химической причинности и биологической целенаправленности декларировал и сам Н. Бор.

В свою очередь, и биологи «не остаются в долгу», заявляя об уникальности и неповторимости биологической эволюции. По словам крупного эволюциониста Э. Майра [1981, с. 26], «биологическая эволюция — это результат особых процессов, вторгающихся в особые системы», а органическая эволюция «отличается от эволюции Вселенной и от других процессов, с которыми имеют дело физики». Об эволюционном прогрессе Э. Майр пишет: «Никакой программы, которая регулировала или направляла этот прогресс, не было; он был результатом решений, принимаемых отбором, „на каждый данный момент”» [Там же, с. 23].

Такие размежевание наук о природе приводит к формулировке гипотез, иногда почти совпадающих с вымыслами художественной фантастики. Например, выдвигается так называемый антропоцентристский, или антропный, принцип. Суть его сводится к тому, что Вселенная устроена таким образом, чтобы в ней мог существовать человек. На примерах анализа фундаментальных физических констант показывается, что только в узком диапазоне их значений возможно существование сложных структур вплоть до живых систем. И поэтому данные константы (или их комбинации) именно таковы, чтобы наши живые структуры могли существовать. В последнее время делается вывод об особом положении Солнца в так называемом «галактическом поясе жизни», в относительно спокойной зоне синхронного вращения спиральных рукавов Галактики и межзвездного газа. Такой вывод близок к теологическим толкованиям, ставившим в основу мироздания нашу планету и ее Творца, создавшего человека по своему образу и подобию.
 
Но все успехи естествознания были связаны именно с отходом от антропоцентризма. Достаточно вспомнить Коперника, Галилея, Ньютона, Лапласа, Эйнштейна.

В биологии развития очевидным следствием антропоцентризма и натурфилософии является моноцентризм. Первым его проявлением (имеется в виду естественнонаучная трактовка эволюции) был организмоцентризм. Концепция организмоцентризма привела к ламаркистскому чисто телеологическому объяснению. Затем сложилось представление о виде, и он стал претендентом на центральное положение в биологии развития.
 
Фундаментальное учение Ч. Дарвина о естественном отборе — результат видоцентризма. Ограниченностъ видоцентризма в том, что естественный отбор выступает чем-то самодовлеющим, «вещью в себе», с его непредсказуемым стохастическим механизмом действия (см. выше цитату из Э. Майра). Недаром яркий и оригинальный критик дарвинизма А. А. Любищев {М., Проблемы формы, систематики и эволюции организмов, 1982, с. 161, 196] обвинял оппонентов в том, что у них «отбор исполняет обязанности всемогущего господа бога», особенно в объяснении прогрессивной эволюции.
 
Однако сам, находясь в плену организмо- и морфоцентризма. прибегал к схоластическим представлениям о единой гармонии природы и о наличии творческого начала, подобного сознанию, когда пытался объяснить сходства и различия форм среди неживой и живой природы.

Недостаточность одного из относительно новых «центризмов» (можно назвать его «ДНК- или геноцентризмом») в последнее время становится также наглядной, особенно при объяснении движущих сил развития жизни (вспомним цитату из П. Эрлиха и Р. Холма). Ответ молекулярных биологов и генетиков — «гены хотят жить и размножаться в замкнутой системе ДНК» — также нельзя признать научным, хотя он используется в завуалированной форме. При этом подходе центральным кирпичиком мироздания служат клетка и со компоненты, включая полимерные молекулы, но в целом это — все тот же организмоцентризм.

Бурное развитие экологии в последнее время приводит к развенчанию моно- и к пониманию идей полицентризма. Ценность экологических исследований для экспериментального изучения действия естественного отбора стала понятной после С. С. Четверикова, положившего начало генетико-популяционному подходу к изучению естественного отбора. Однако сложности экспериментов с популяциями и экосистемами сильно затормозили развитие экологического направления в эволюционных исследованиях. Необходимость «учета в эволюционных построениях глобального биосферного биоценотического фактора» [Татаринов, 1985, с. 16] все более осознается в настоящее время.
 
Количественные экологические исследования, особенно синэкологического направления, позволяют поставить экосистему, а точнее, круговорот веществ в ней в центр картины развития живой природы. И здесь, может быть даже несколько неожиданно, по совершенно очевидно, проявляется источник движения и развития жизни. Не таинственное стремление к самосовершенствованию, не самоорганизация биологических структур, «не могущих жить без метаболизма», а постоянная накачка потоком свободной энергии и вынужденность вращения вещества под воздействием этого возмущения.
 


Рис 1. Схема трехзвенной системы с притоком энергии
 
Покажем схематическую систему, накачиваемую потоком энергии (рис. 1). Обязательным элементом является и третье звено — приемник энергии, или сток, в который энергия в рассеянном виде переходит от. промежуточной системы. Для нашей биосферы основным источником энергии служит Солнце, а приемником — Космос. В любых промежуточных системах кого типа (с протоком энергии) по законом физики возникают циклы в виде динамических структур. В большинстве случаев нам кажется, что они возникают сами по себе, и мы даже называем это явление «самоорганизацией структур», что придает некоторый налет загадочности.
Но в каждом случае обязательно есть «творец», и он имеет материальную природу. На Земле — это поток энергии от Солнца, который вызывает и организует круговороты в ограниченной системе (от простых физических: воды и воздуха, до сложного, биотического ). Однако функционально биотический круговорот. совсем несложен: это цикл реакций восстановления и окисления, где этап восстановления и подкачивается энергией квантов света. Развивался он постепенно из физико-химического. Обрастание сложными структурами — это вторичное явление. Будут выживать те, которые лучше вписываются в круговорот, способствуют его ускорению и умощнению (например, скорости химических реакций в живой природе возросли в миллионы и миллиарды раз). При этом круговорот использует все больше энергии и даже захватываются ее дополнительные потоки. Принципы развития очень просты и, главное, могут быть выражены количественно.
 
Роль «царицы мира», энергии, при таком подходе начинает проявляться по-настоящему, а ее «тень», энтропия, своим ростом только демонстрирует возрастание потоков свободной энергии, использованной экосистемой. Поэтому упомянутые представления Э. Шредингера о негэнтропии скорее можно назвать «поэтическими» (по выражению профессора Моровица, автора книги «Потоки энергии в биологии»), нежели физическими: для неравновесных систем энтропию очень часто трудно определить, тогда как энергия и ее потоки гораздо легче поддаются количественным измерениям.

Естественный отбор в этом случае перестает выступать в роли «господа бога», а к очевидностью выполняет и творческую (поступательное развитие круговоротов, прогресс), и сдерживающую, стабилизирующую роль (устранение избытков траты вещества, вплоть до явного регресса формы организмов). Телеологичность становится не только более явной, но и явно материалистической. А действие естественного отбора проверяется и контролируется не только на уровне видообразования (горизонтальном), но и на уровне совершенствования целых экосистем (вертикальном).

По методологии все современные концепции развития жизни можно отнести к трем основным типам: субстратные, энергетические и информационные.
 
Разработка общей теории биологического развития, прежде всего прогрессивного, должна естественным образом опираться на все три концепции, органически связывая их друг с другом во взаимодополнении и обогащении.

Исторически сложилось так, что первой стала развиваться субстратная концепция, начавшись с морфологии организмов. Дальнейшее развитие биохимии и физиологии углубило понимание биохимического единства живой природы, а бурный взрыв исследований по молекулярной биологии и генетике в последние десятилетия доказал единую генетико-молекулярную основу всех процессов жизнедеятельности.
Триумфальные шествие этой концепции автоматически привело к абсолютизации некоторых ее положений, что сводится к одностороннему толкованию причин возникновения и развития жизни (вспомним: «Гены хотят жить и размножаться» ).

Информационная концепция, появившись самой последней, начала бурно развиваться с совершенствованием кибернетики и теории информации. Отметим, что даже в первом основополагающем труде по кибернетике Н. Винера речь шла об управлении и связи как в машине, так и в живом организме. Кибернетический подход позволил многое понять в развитии механизмов управления в живой природе, дав представление и о темпах эволюции. Однако и он, по попятным причинам, односторонен. Не ясно, как конкретно применять основанный на использовании этого подхода вывод о «возрастании ценности информации в эволюции».

Энергетическому подходу, как мы уже говорили, повезло меньше двух первых из-за различий в методологии физики и биологии. Однако именно он указывает направление развития сложных открытых систем, подвергающихся постоянной накачке энергией извне: это совершенствование циклов вещества; их умощнение и ускорение; возрастание переработки энергии каждой единицей структуры. Но и здесь абсолютизация недопустима, ибо один энергетический подход не способен дать представление о структурных особенностях эволюционирующих структур.

Например, рассуждая о возникновении жизни, точнее говорить не о «биохимическом предопределении» (а именно так называется книга Д. Кеньона и Г. Стейнмана о проблемах происхождения жизни, [М., 1972]), а об «энергетическом предопределении» зарождения живых структур. При этом важнейшая роль остается за субстратным подходом, т. е. за биохимическим «исполнением» жизни.

1. Субстратный плюс Информационный (без Энергетического) : С+И—Э.
Явная телеология при всех долевых вариантах их отношений и в итоге — нет направления развития: «кто» эволюционирует — ясно, «как» и какими темпами — ясно, неясно — «куда».

2. Субстратный плюс Энергетический (без Информационного) : С+Э—И.
 Известно, «кто» и «куда» эволюционирует, неясно— «как» (с какой скоростью).

3. Энергетический плюс Информационный (без Субстратного): Э+И—С.
 Известно, «куда» и «как», только неясно — «кто» эволюционирует (биологические системы или, к примеру, промышленные технологии).

Для плодотворного, равноправного синтеза время только наступает, и пока менее всего готов к нему, слабее всех разработан энергетический подход — это следует подчеркнуть еще раз! Различные, но далеко не все аспекты этого подхода, по возможности в сочетании с субстратным и информационным, освещаются в данной статье.
Категория: ШКОЛА Воинствующего Крестьянина | Добавил: coba (06.12.2011)
Просмотров: 875 | Теги: В. Сова, Биология, развитие, Современность, энергия, плодородие | Рейтинг: 5.0/1
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Поиск по сайту


Copyright хутор СОВА (с) 2024